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A B S T R A C T

Key to ensuring a successful tourism sector is timely policy making and detailed planning.
National policy formulation and strategic planning requires long-term forecasts at an aggregate
level, while regional operational decisions require short-term forecasts, relevant to local tourism
operators. For aligned decisions at all levels, supporting forecasts must be ‘coherent’, that is they
should add up appropriately, across relevant demarcations (e.g., geographical divisions or market
segments) and also across time. We propose an approach for generating coherent forecasts across
both cross-sections and planning horizons for Australia. This results in significant improvements
in forecast accuracy with substantial decision making benefits. Coherent forecasts help break
intra- and inter-organisational information and planning silos, in a data driven fashion, blending
information from different sources.

This article also launches the Annals of Tourism Research Curated Collection on Tourism
Demand Forecast, a special selection of research in this field.

Introduction and background

The tourism sector is of vital importance to Australia.1 In 2016–2017 tourism contributed $55.3 billion to Australia's economy,
accounting for 3.2% of Australian GDP. It is the sixth largest sector in Australia directly employing 598,200 persons, accounting for
4.9% of the national workforce. Domestic tourism contributed an estimated $38.6 billion or approximately 70% of total tourism.
Moreover, domestic consumers dispersed outside capital cities, much more than international arrivals, visiting regional Australia for
63% of their trips. This is extremely positive for the support and economic development of smaller regional areas, among them
Indigenous communities in remote areas, an integral part of Australian society (see Mahadevan, 2018; Abascal, Fluker, & Jiang, 2016,
and references therein for studies related to Australian indigenous tourism).

Sustaining a healthy, diverse and dynamic tourism sector that can meet demand is a very costly exercise. For example, in
2016–2017 there were 204 projects in the tourism investment pipeline for Australia, valued at $37.8 billion across the whole country.
Such investment decisions to be successful require the support of accurate, detailed but also coherent forecasts. Forecasts are coherent
when the predicted values at the disaggregate and aggregate scales are equal when brought to the same level. For example, monthly
predictions sum up to annual ones and similarly regional predictions are add up to country level ones. This is an important qualifier
for forecasts, so as to support aligned decision making across different planning units and horizons. Otherwise, different decision
making units plan on different views of the future. In this paper we generate forecasts for Australian domestic tourism that are
coherent across multiple geographical divisions, but are also coherent across time, i.e., the planning horizon.
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As is the case with many tourism sectors worldwide, Australian tourist flows can be disaggregated geographically. A collection of
time series adhering to such aggregation constraints, is referred to as a ‘hierarchical time series' (Chapter 10 of Hyndman &
Athanasopoulos, 2018, provides a detailed introduction to forecasting such structures). For the case of Australian domestic tourism
this is a naturally formed geographical hierarchy. The most aggregate level of the hierarchy, referred to as level 0, comprises the total
aggregate flows at the national level for Australia. Level 1, comprises flows disaggregated by the 7 states and territories, which are
further disaggregated at level 2 into 27 zones and at level 3 into 76 regions. In total, the Australian tourism hierarchy, based on the
geographical divisions, is constituted by 111 series that record tourism flows. These are summarised in Table 1. Table A.4 in the
Appendix shows full details of the Australian tourism geographical divisions.

With such a structure each time series represents a different geographical component of the tourism sector and hence they
naturally vary in nature, both in terms of scale, but also time series features. This is demonstrated in Fig. 1. The top-left panel shows
total visitor nights, the proxy used in this paper for tourism flows, at the aggregate national level. The first prominent feature of this
aggregate series is the strong seasonal component, with visitor nights spiking every January as this includes the summer vacations in
Australia. There is also a notable upward trend, starting from 2010 until the end of the sample. As we move down the hierarchy, these
features become less prominent. Although they may still exist, they are more challenging to identify and model, as the signal to noise
ratio of the series decreases. Therefore, some of the series at Levels 2 and 3, illustrated at the bottom panels, show a lot more random
variation and less pronounced features compared to the levels above.

Generating accurate forecasts for each component of such hierarchy is key to successful planning at all levels. Given that the data
adheres to aggregation constraints, i.e., the data by nature is coherent, it is necessary that forecasts also adhere to these.

Table 1
Number of time series per level of hierarchy.

Hierarchy Number of series

Level 0 (top-level) 1
Level 1 7
Level 2 27
Level 3 (bottom-level) 76
Total 111
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Fig. 1. Total domestic visitor nights in millions for selected geographical divisions of Australia. See Table A.4 for further details.
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Traditionally, in order to achieve coherent forecasts, such structures were forecasted by first selecting a specific level of aggregation,
generating forecasts at that level and then either: aggregating these up using a ‘bottom-up’ approach; disaggregating these down
using a ‘top-down’ approach; or using a combination of these and implementing a ‘middle-out’ approach. Athanasopoulos, Ahmed,
and Hyndman (2009) provide a detailed discussion and critical evaluation of the traditional approaches and their first im-
plementation for forecasting tourism data. A later example of the traditional approach applied to tourism data is by Wan, Wang, and
Woo (2013), who analyse aggregate versus disaggregate forecasts for international arrivals into Hong Kong. They consider alternative
bottom-up approaches, arguing that these take advantage of the heterogeneity across the disaggregate series, and show that the
traditional bottom-up approach is more accurate compared to directly forecasting at the aggregate level. A significant drawback of
the traditional approaches is that they use limited information from the data, as only one level of the hierarchy is modelled and
forecasted, ignoring valuable information from all other levels. The deeper the hierarchy, i.e., the more levels of aggregation, the
more information is ignored. This also increases the model selection risk, where the modeller relies on a single model for all forecasts,
which may be misspecified and inaccurate (Kourentzes, Barrow, & Petropoulos, 2018). Finally, they also ignore any correlations
across the series.

To overcome the limitations of the traditional approaches for forecasting hierarchical times series the concept of forecast re-
conciliation has been developed over a sequence of papers (see among them Wickramasuriya, Athanasopoulos, & Hyndman, 2018;
Hyndman, Ahmed, Athanasopoulos, & Shang, 2011; Athanasopoulos et al., 2009). The idea of forecast reconciliation works in the
following way. First, a set of forecasts is generated independently for each time series in the structure. These forecasts are referred to
as ‘base’. Subsequently, base forecasts are reconciled so that they become coherent, while also accounting for any correlations across
the series. The aforementioned papers show ample empirical evidence that forecast reconciliation does not only guarantee coherent
forecasts, but also that it improves forecast accuracy. The flexibility of the approach is one of its main features. Generating base
forecasts for each series means that different models can be used for different parts of the hierarchy, depending on the information set
available. For example, for strategic decisions at the national or state levels, causal models may be most suitable (Sagaert, Aghezzaf,
Kourentzes, & Desmet, 2018). At these levels leading indicators, such as variables capturing economic conditions and future ad-
vertising expenditure, are available to policy makers. Exploring future scenarios and the trickle down effect of these throughout the
tourism sector is of interest. For the levels below, with either limited information, or when capturing the effects of explanatory
variables becomes very difficult, due to the low signal-to-noise ratio, pure times series approaches may be the preferable, if not the
only, choice.

Forecast reconciliation, as implemented by the papers above, will generate coherent forecasts across a hierarchy spanning the
cross-sectional dimension. For the case of Australian tourism these forecasts will assist in aligning policy decisions across the geo-
graphical divisions. In the temporal dimension, forecasts supporting decisions for different planning horizons may also be generated
using approaches that utilise different information sets. For example, long-term annual forecasts supporting strategic decisions ty-
pically involve high level unstructured information from multiple sources and judgement (Ord, Fildes, & Kourentzes, 2017), in this
context from tourism experts. An example is the Tourism Forecasting Reference Panel comprising experts from industry and gov-
ernment, that was established by Tourism Research Australia. On the other hand, short-term monthly forecasts, supporting opera-
tional decisions, may be generated by only considering past tourism flows.

Andrawis, Atiya, and El-Shishiny (2011) find that combining forecasts from deseasonalised monthly and annual series is bene-
ficial for forecasting international tourist arrivals to Egypt. Kourentzes, Petropoulos, and Trapero (2014) proposed using multiple
temporal aggregation levels, instead of a single one, as is the conventional time series approach. They introduce the Multiple Ag-
gregation Prediction Algorithm (MAPA) that uses multiple temporal aggregation with univariate exponential smoothing forecasts and
find that this approach generates considerable forecast gains, particularly for long-term forecasts (further evidence by Kourentzes &
Petropoulos, 2016), while mitigating the model selection uncertainty (Kourentzes, Rostami-Tabar, & Barrow, 2017). Athanasopoulos,
Hyndman, Kourentzes, and Petropoulos (2017) extend this concept by introducing the notion of temporal hierarchies and forecast
reconciliation in the temporal dimension. Similarly to cross-sectional forecast reconciliation, base forecasts are first generated in-
dependently for all temporal aggregation levels. Only levels that do not introduce non-integer seasonality are retained. For example,
using monthly data, forecasts are generated at the monthly, bi-monthly, quarterly, four-monthly, semi-annual and annual fre-
quencies. The processes that generate these forecasts capture different features of the times series as these are strengthened or
attenuated across the different temporal aggregation levels. Fig. 2 plots the annual view of the series in Fig. 1 and demonstrates that
the trending behaviour of the series becomes even more apparent, as any seasonality is filtered out and some of the noise is smoothed
by the non-overlapping temporal aggregation.

The base forecasts are then reconciled, resulting to coherent forecasts across all forecast horizons and all temporal aggregation
levels. Coherent forecasts across all horizons will lead to aligned decisions at different planning horizons. For example, the short-run
seasonal variation which guides staffing for seasonal planning will be aligned with the longer-term trends which guide staff training.
A considerable difference between MAPA and forecasting using temporal hierarchies is that the latter is independent of forecasting
methodology and can incorporate statistical forecasts, generated using various methods and information sources, as well as expert
judgement.

Both cross-sectional and temporal forecast reconciliation approaches have shown substantial forecast improvements empirically.
A critical but intuitive reason for this improvement is that forecast reconciliation methods are forecast combination approaches
dealing with parameter estimation errors and model misspecification. Forecast combinations have been regarded to be beneficial, as
they reduce error variance (see for example Kourentzes et al., 2018; Barrow & Kourentzes, 2016; Elliott & Timmermann, 2013;
Winkler & Clemen, 1992; Bates & Granger, 1969). Forecast combinations have also been shown to be successful within the tourism
literature (see for example Wan & Song, 2018; Shen, Li, & Song, 2011; Coshall & Charlesworth, 2011).
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Although the appeal of cross-sectionally or temporally coherent forecasts, for decision making and improving forecast accuracy is
evident, these approaches have so far only been used disjointedly. This introduces a key limitation. For example, considering
forecasting tourism flows, there is limited use for high-frequency forecasts at a very aggregate geographical level. That could be
weekly forecasts at the national level for Australia, if the cross-sectional reconciliation was done on weekly sampled series. On the
other hand, one of the outcomes of the application of temporal forecast reconciliation could be very long-term forecasts at a very
disaggregate level. Again, these are potentially of limited use to the decision makers of that level. Therefore, although using either
cross-sectionally or temporally coherent forecasts offer benefits to decision making, not all outputs from these are directly useful. One
would have to post-process forecasts further, for example by combining together multiple long-term disaggregate regional of tem-
porally reconciled forecasts to produce long-term total tourism demand forecasts, which would then break the desired coherence
across all levels and time periods.

In this paper we address this problem and propose a framework to generate cross-temporally coherent forecasts, supporting all
levels of the hierarchy with short- to long-term forecasts. The outcome is a ‘single number’ forecast, where all decisions makers have a
common view of the future, with apparent benefits for aligning decisions. Furthermore, we demonstrate empirically that cross-
temporal reconciliation offers further accuracy gains to either cross-sectional or temporal reconciliation, as the forecasts are exposed
to the complete information available to the problem domain.

The rest of the paper is structured as follows. ‘Methodology: cross-temporal forecast reconciliation’ section presents key concepts
and insights of cross-sectional and temporal forecast reconciliation followed by our proposed approach for achieving cross-temporal
forecast reconciliation. Empirical application section presents the empirical application results based on Australian tourism flows and
Conclusions section discusses the managerial implications of the cross-temporally coherent forecasts and concludes.

Methodology: cross-temporal forecast reconciliation

As discussed in the introduction, forecast reconciliation so far has been applied to either the cross-sectional or temporal di-
mension. In this section we extend these approaches in order to achieve reconciliation in both dimensions. We start by presenting the
general framework of reconciliation avoiding reference to cross-sectional or time indices where possible. We then discuss specific
issues and solutions for each of these dimensions and present a process achieving reconciliation across both dimension. We refer to
this as cross-temporal reconciliation.

For simplicity we demonstrate the methodology using the small hierarchy of Fig. 3. We label as yTot the observation at the most
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Fig. 2. Annual total domestic visitor nights in millions for selected geographical divisions of Australia. See Table A.4 for further details.
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aggregate (Total) level; and as yj the observation corresponding to node j below the total. Aggregation constraints dictate that:

= +y y y ,Tot X Y (1)

= + + +y y y y y ,Tot XX XY YX YY (2)

= +y y y ,X XX XY (3)

= +y y y .Y YX YY (4)

There are two important dimensions in a hierarchical setting. We denote as m the number of nodes in the bottom of the hier-
archical tree, referred to as the bottom-level of the hierarchy; and as n the total number of nodes on the tree. In this simple example
n=7 and m=4.

Stacking all the observations of the hierarchy in a n-dimensional vector y=(yTot,yX,yY,yXX,yXY,yY X,yY Y)′, and similarly the
bottom-level observations in an m-dimensional vector b=(yXX,yXY,yY X,yY Y)′ we can write

=y Sb,

where

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

S

I

1 1 1 1
1 1 0 0
0 0 1 1

m (5)

has dimension n×m and is referred to as the ‘summing’ matrix. Im is a m-dimensional identity matrix. S maps the hierarchical
structure, where from the bottom level b we can construct the complete hierarchy y. Observe that S captures the aggregation
constraints within the hierarchy, reflected in the linear summations of the bottom-level observations.

The concept of forecast reconciliation starts by first generating an initial set of forecasts independently for each node in the
hierarchy, referred to as ‘base’ forecasts. We denote these as ŷh, a set of h-step ahead forecasts stacked in the same order as the data y.
In general base forecasts will not be coherent. For example, the base forecasts generated for each series for the simple hierarchy of
Fig. 3 will in general not adhere to the aggregation constraints of Eqs. (1)–(4).

Forecast reconciliation of the base forecasts is achieved by

=y SGy~ ^ ,h h (6)

where G maps the base forecasts into the reconciled bottom-level ones and S sums these up to a set of coherent forecasts y~h. S G can
be thought of as a reconciliation matrix, it takes the incoherent base forecasts, of all levels, and reconciles them. It is apparent that G
linearly combines all ŷh to the reconciled bottom level forecasts, hence these blend information from all levels. A major drawback of
traditional approaches is that the G used only considers information from a single level. There is now ample empirical evidence
showing that using the full information set has substantial benefit in forecast accuracy (see for example Athanasopoulos et al., 2017;
Wickramasuriya et al., 2018, and references therein). Gamakumara, Panagiotelis, Athanasopoulos, and Hyndman (2018) also present
theoretical justifications. More importantly any decisions based on the reconciled forecasts have the ability to use all information
available at different parts of the hierarchy. For example, as argued before, the top and the most disaggregate levels of the hierarchy
have different information available, with the later being very close to the customer, and the former having a bird's-eye view.
Therefore, the identification of G is critical for the success of hierarchical forecasting.

Wickramasuriya et al. (2018) show that

= ′ ′− − −G S W S S W( )h h
1 1 1 (7)

minimises the tr[S G WhG′S′] subject to S G S= S, where ′ ′ = −SGW G S y yVar( ~ )h h , the variance covariance matrix of the h-step
ahead coherent forecast errors and = ′W ê eE ( ^ )h h h is a positive definite covariance matrix of the base forecast errors = −ê y ŷh h. The
method is referred to as MinT as it minimises the trace of the covariance of the h-step ahead coherent forecast errors. The significance
of the S G S= S constraint is that the resulting coherent forecasts are unbiased, as long as the base forecasts that were used are

Fig. 3. A two-level hierarchical tree diagram.
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unbiased.
A challenge with the G matrix of the MinT approach specified in (7) is that it requires an estimate of Wh, which is of dimension

n× n and hence this can be potentially very large. A simplifying assumption imposed by Hyndman et al. (2011), and also im-
plemented by Athanasopoulos et al. (2009), was to set Wh= khIn for all h, and kh>0 is a proportionality constant. This simplifying
assumption has been shown to work well in practice (as shown in the aforementioned references) and also makes the approach trivial
to use, as no further estimation of a covariance matrix is required and G depends only on S that is always known. However, it does
ignore valuable information about the scale differences (captured by the variances) and the interrelations (captured by the covar-
iances) of the observations within the hierarchical structure.

In this paper we consider three alternative estimators. The first two are diagonal covariance estimators accommodating for the
scale differences across the hierarchical levels. The third one is a shrinkage estimator accommodating for both. Note in the estimators
that follow kh is a proportionality constant and does not need to be estimated.

Variance scaling

Set =W Wk diag( ^ )h h 1 for all h where kh>0 and

∑= ′
=

W e e
T

^ 1 ,
t

T

t t1
1

where et are in-sample residuals of the base forecasts stacked the same way as the data. This specification scales the base forecasts
using the variance of the residuals. For example, the resulting estimator for the simple hierarchy of Fig. 3 is provided in Fig. 4a, where
σ̂j

2
are the estimated variances of the in-sample residuals corresponding to each time series. We refer to this as Var in the results that

follow.

Structural scaling

Set Wh= khΛ for all h, where kh>0, Λ=diag(S 1), and 1 is a unit vector of dimension n. This specification assumes that each of
the bottom-level base forecasts has errors with equal variance kh and these are uncorrelated between nodes. Therefore, higher level
error variances are the sum of the error variances of the lower level series that belong to that part of the hierarchy. Hence, each
element of the diagonal matrix contains the number of forecast error variances contributing to each node. Fig. 4b provides the
resulting matrix for the simple hierarchical structure of Fig. 3, where, for instance, the 4 at the top level signifies that four bottom
level series are used to construct it. This estimator only depends on the structure of the aggregations, and not on the actual data. It is
therefore referred to as structural scaling and we denote this as Struc in the results that follow.

Applying structural scaling is particularly useful in cases where residuals are not available, and so the variance scaling cannot be

Fig. 4. Examples of the three alternative estimators for Wh for the hierarchy in Fig. 3.
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applied; for example, in cases where the base forecasts are generated by judgemental forecasting.

A shrinkage covariance estimator for MinT

Set =W Wk ^ *
h h D1, for all h, where kh>0 and = + −W W Wλ λ^ * ^ (1 ) ^

D D1, 1, 1 is a shrinkage estimator with diagonal target Ŵ D1, , a

diagonal matrix comprising the diagonal entries of Ŵ1, and λ the shrinkage intensity parameter. Schäfer and Strimmer (2005)
proposed to set the shrinkage intensity parameter to

=
∑

∑
≠

≠

λ
r

r
^ Var(^ )

^
,i j ij

i j ij
2

where r̂ij is the ijth element of R̂1, the 1-step-ahead in-sample correlation matrix. As the resulting shrinkage estimator is parametrised
in terms of variances and correlations it is a scale and location invariant shrinkage estimator. The effect is to shrink off-diagonal
elements of Ŵ1 towards zero, while diagonal elements (variances) remain unchanged. Therefore, in contrast to the previous variance
and structural scaling estimators, this allows for strong interrelations between time series in the hierarchy to be captured, while the
shrinkage alleviates the complexity of the estimation due to the size of Wh. Fig. 4c exemplifies this for the hierarchy of Fig. 3. The
diagonal elements are the same as for the variance scaling case (Fig. 4a), while the off-diagonal elements, ρ̂ij, are the resulting

empirical covariances as shrunk towards zero, according to the prescribed shrinkage intensity parameter λ̂ . We denote the results
associated with this estimator as MinT.

Cross-sectional forecast reconciliation

In the cross-sectional setting the nodes of a hierarchical tree, such as the simple tree in Fig. 3, represent observations at time t of a
collection of time series connected by the aggregation constraints. The base forecasts ŷh are h-step ahead forecasts for each time
series, which in this context may represent different geographical regions, market segments, etc.

In this setting, there are two main challenges: (i) the size of the cross-sectional dimension of the hierarchy; and (ii) the het-
erogeneity of the series across, but also within levels. The size relates directly with estimation of Wh, and therefore very large
hierarchies, potentially with limited history, introduce potential estimation and computational cost challenges. Given that the time
series across each level can represent very different entities, the expectation is that there will be substantial heterogeneity between
them. Assuming a common variance across all bottom-level series is not suitable and therefore we choose to not apply structural
scaling. Hence, in the cross-sectional setting we only apply variance scaling and the shrinkage MinT estimator for reconciling the base
forecasts.

Temporal forecast reconciliation

Athanasopoulos et al. (2017) proposed that in analogy to cross-sectional hierarchies, one can specify hierarchies that span the
time dimension and are therefore referred to as ‘temporal hierarchies'. The bottom-level of a temporal hierarchy comprises a time
series observed at its highest frequency. Aggregation levels above are generated by non-overlapping temporal aggregation for all
frequencies that do not introduce non-integer seasonality. For example, the hierarchical tree of Fig. 3 can be seen to represent a
temporal hierarchy constructed for a quarterly series as shown in Fig. 5. The bottom-level comprises of the four quarterly ob-
servations (Qj, with j=1,…,4), the middle level of two semi-annual observations (SAj, with j=1,…,2) and the top level a single
annual observation (A).

Base forecasts for temporal hierarchies are generated for each time series across the temporal aggregation levels, for forecast
horizon h. Let h*= ⌈h/M1⌉ be the horizon at the most aggregate (annual) level, where M1 is the number of observations within a year
at the data sampling frequency and ⌈x⌉ is the ceiling function that returns the least integer greater than or equal to x. Then, h*Mℓ steps
ahead forecasts are generated for each temporal aggregation level, where Mℓ depicts the number of observations per year for

Fig. 5. A temporal hierarchy for quarterly data. Qj with j=1,…,4, denote quarters, SAj with j=1,2, semi-annual observations, and A the annual
observation.
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aggregation level ℓ. Using as an example the temporal hierarchy in Fig. 5 and assuming that the target forecast horizon is h=6
quarters, then M1= 4 (4 quarters in a year), h*= ⌈6/4⌉=2 (forecast two complete years) and for the quarterly, semi-annual and
annual levels h*M1= 2 ⋅ 4=8, h*M2= 2 ⋅ 2=4, h*M3= 2 ⋅ 1=2 steps-ahead forecasts are generated respectively. Therefore, when
forecasting with temporal hierarchies we need to produce forecasts for complete hierarchical trees and then use as many as needed
for the forecasting problem at hand.

In contrast to the cross-sectional case, since the forecasts for each level are for the same series, assuming homogeneous forecast
errors within each level is reasonable. On the other hand, following the arguments by Athanasopoulos et al. (2017), since the
covariances in Wh would be between series of different sampling frequencies due to the temporal aggregation, we do not implement
the MinT shrinkage estimator. We refer to forecasts generated using temporal reconciliation as THieFs (Temporal Hierarchy Fore-
casts).

Cross-temporal forecast reconciliation

Intuitively, one could apply temporal and cross-sectional forecast reconciliation sequentially, aiming to achieve cross-temporally
coherent forecasts. However, this does not guarantee the desired outcome. Suppose that for each node of a cross-sectional hierarchy,
we consider a temporal hierarchy and generate THieFs for each node as base forecasts. We illustrate this cross-temporal combination
in Fig. 6 by combining the trees of Figs. 3 and 5. Using reconciliation matrix S G, where G is specified as in (7), we can apply cross-
sectional reconciliation for each node across the temporal hierarchies. However, although the summing matrix S will be common
across each node, Wh will not, as the in-sample residuals differ across these. Hence, although we will achieve cross-sectional re-
conciliation, we will no longer have temporally coherent forecasts within each cross-sectional node. In the literature there have been
some attempts to apply cross-sectional and temporal hierarchical forecasting sequentially (for example, see Spiliotis, Petropoulos,
Kourentzes, & Assimakopoulos, 2018), which due to the sequential nature do not ensure coherence across all dimensions.

In principle it is possible to design a summing matrix S that would simultaneously consider both dimensions of reconciliation.
However, its size will become prohibitively large very quickly. Each element in the cross-sectional summing matrix will need to be
replaced by the complete temporal summing matrix. Furthermore, the estimation of the cross-temporal Wh will not be trivial. First its
size will be equally large. Furthermore, as we argue above, the shrinkage MinT estimator is not suitable for the temporal dimension,
and the structural scaling estimator is not suitable for the cross-sectional dimension. Hence designing an estimator to fully capture
scaling issues and cross-sectional interdependencies is not straight forward. Instead, we propose an alternative approach to achieve
cross-temporally coherent forecasts.

Given THieFs, which are independently generated for each node of the cross-sectional hierarchy, we use (7) and generate k cross-
sectional reconciliations, setting =W Ŵh h,ℓ, for each ℓ=1,…,k, where k denotes the number of temporal aggregation levels. This

Fig. 6. A two-level cross-sectional hierarchy with base THieFs, assuming quarterly data.
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results in a respective reconciliation matrix S Gℓ for each temporal aggregation level. Averaging across these we compose a consensus

reconciliation matrix SG
¯
, where = ∑ =G Gk1/ k¯

ℓ 1 ℓ, capturing the reconciliation consensus across all k temporal aggregation levels.

This fairly simple approach has the benefit of using equal weights to obtain G
¯
, which eliminates any further estimation issues.

Furthermore, using fixed weights has been shown to result in reliable and accurate forecast combinations (Smith & Wallis, 2009). The
outcome are cross-temporally reconciled forecasts, which are coherent across both dimensions, at all scales. In the empirical eva-
luation that follows we denote as Var-A and MinT-A the cross-temporally coherent forecasts using respectively variance and MinT

scaling in the cross-sectional dimension. We provide evidence of the magnitude of the coherency violation that occurs when G
¯
is not

used.

Empirical application

Case study data

We consider ‘visitor nights', the total number of nights spent by Australians away from home, as a proxy of domestic tourism
flows.2 The total number of time series considered are 111, and their split in the different levels of the hierarchy is summarised in
Table 1. Total details of the geographical divisions are shown in Table A.4. Fig. 1 illustrates example series from different levels of the
hierarchy, where it can be observed that series can exhibit local trend and seasonality. The data are monthly and span the period
January 1998 to December 2017.

We retain the last 72months (6 years) as a test set, which will be used to assess the performance of the competing forecasts. We
choose a relatively long test set to facilitate the use of rolling origin evaluation. This allows us to generate a distribution of forecast
errors for each case, so as to increase the confidence in our findings. For each time series, we consider 12months ahead forecasts. The
rolling origin is implemented in the following way. For each forecast origin, all models for the base forecasts are re-specified, i.e. re-
selected and re-optimised, and the corresponding forecasts are generated and reconciled. The training data are expanded by one
observation and the process is repeated for the next forecast origin, until the complete test set is exhausted. Therefore, for each time
series there are q=61 forecast origins. From each, we generate forecasts and calculate forecast errors.

Forecasting models

We consider two alternative forecasting model families for generating the independent base forecasts, namely the ExponenTial
Smoothing (ETS) and AutoRegressive Integrated Moving Average (ARIMA) families. Both model families have been shown to perform
well on tourism data (Athanasopoulos, Hyndman, Song, & Wu, 2011).

ETS captures time series as the total of four fundamental time series components: level, trend, seasonality and the error process.
These components can interact in an additive or multiplicative way, in principle producing up to 30 different models, some of the
most well known ones being the local level (single exponential smoothing), local trend (Holt's exponential smoothing) and the trend-
seasonal (Holt-Winter's exponential smoothing) models. ETS is widely used in research and practice, due to its relatively good
forecast accuracy, simplicity and minimal data requirements (Gardner, 2006). Hyndman, Koehler, Snyder, and Grose (2002) em-
bedded exponential smoothing in the state space modelling framework, providing the statistical rationale for automatic parameter
specification and model selection, greatly improving the automation and accuracy of ETS (Hyndman, Koehler, Ord, & Snyder, 2008).

The complete ETS taxonomy includes 30 alternative model specifications that correspond to archetypical time series that cover a
very wide range of real time series. Hyndman, Akram, et al. (2006) shows that 11 of these specification are unstable, limiting their
usefulness and Hyndman, Athanasopoulos, Bergmeir, Caceres, Chhay, and O’Hara-Wild (2018) further restrict models that have
multiplicative trends, on grounds of weak forecasting performance, leaving the 15 potential models listed in Table 2. Given the
widespread use of ETS, we refer the reader to standard textbooks for the formulation of the models (Hyndman et al., 2008; Ord et al.,
2017; Hyndman & Athanasopoulos, 2018).

ARIMA model time series as a collection of autoregressive and moving average components, where the former regress the forecast
target on its past realisations, and the latter regress the forecast target on past errors, once the time series has been differenced as
needed to become stationary. Intuitively, ARIMA models aim to capture habitual elements of demand in time series, through the
autoregressive components, while smoothing out the inherent noise in the data, through the moving average components. Again, we
refer the reader to standard textbooks (cited above) for the formulation of ARIMA models. Following the methodology proposed by
Hyndman and Khandakar (2008) for each time series we identify the appropriate ARIMA components. This involves first selecting the
orders of seasonal and non-seasonal integration and then selecting seasonal and non-seasonal ARMA components based on a model
selection criterion.

For each time series, at each forecast origin, the appropriate ETS and ARIMA models are chosen by minimising the Akaike
Information Criterion corrected for small sample sizes (AICc, Burnham & Anderson, 2003), as implemented in the forecast package
(Hyndman et al., 2018) for R (R Core Team, 2018). Although ETS and ARIMA model families have some commonalities, generally
these two families perform differently. First, although additive ETS models are encompassed by ARIMA, its mixed and multiplicative

2 The data come from the National Visitor Survey, managed by Tourism Research Australia, and are collected throughout the year using computer
assisted telephone interviews from nearly 120,000 Australian residents aged 15 years and over.
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model forms are not. Second, ARIMA can potentially capture higher order time series dynamics than ETS. Third, the different model
specification strategies can result in substantially different forecasts, even if in principle both families contain some mathematically
equivalent models. Therefore, we use both families to generate base forecasts so as to investigate how enforcing forecast coherence
influences the outcome.

Although we focus on two univariate families of models, a major advantage of the reconciliation approaches, is that the model
choice or the forecast generating mechanism for each series or each level of the hierarchy is completely flexible. For example, it may
be desirable that for aggregate levels such as national or state tourism flows or for the quarterly frequency for which economic
predictors are available, regression type models incorporating predictors or even multivariate models may be a better choice.

To generate cross-temporally coherent forecasts, based on the base ETS and ARIMA predictions, we expand on the base im-
plementations of cross-sectional and temporal reconciliations available in the hts (Hyndman, Lee, Wang, & Wickramasuriya, 2018)
and thief (Hyndman & Kourentzes, 2018) packages in R.

Evaluation setup

To track the forecast accuracy we use the Average Relative Mean Squared Error (AvgRelMSE). For each time series we calculate
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where yi,t+j and +ŷi t j, are the observed value and forecast for time series i in time period t+ j, from forecast origin t and for forecast
horizon j=1,…,h. We need to aggregate the accuracy measurement across multiple time series and therefore it is important to
remove any scale and unit information from MSE. We construct RelMSEi,t as the ratio of MSEi t
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where q is the number of forecast origins. The AvgRelMSE has very intuitive interpretation, where if it is smaller than 1, then the
evaluated forecast is better than the benchmark by (1 −AvgRelMSE)100%. Furthermore, AvgRelMSE has several attractive statistical
properties, in being calculable in a very wide variety of scenarios and being symmetric to over and under-forecasting (Davydenko &
Fildes, 2013).

To assess whether the reported forecast error differences are significant or not, we use the non-parametric Friedman and post-hoc
Nemenyi tests (Hollander, Wolfe, & Chicken, 2013). The Friedman test first establishes whether at least one of the forecasts is
significantly different from the rest. If this is the case, we use the Nemenyi test to identify groups of forecasts for which there is no
evidence of statistically significant differences. The advantage of this testing approach is that it does not impose any distributional
assumptions and does not require multiple pairwise testing between forecasts, which would distort the outcome of the tests.We use
the implementation of the tests available in the tsutils (Kourentzes, 2019) package for R.

Table 2
Considered ETS models.

Model component Specification

1 2 3/4 5/6 7 8 9/10 11/12 13 14/15

Error
Additive ✓ ✓ ✓ ✓
Multiplicative ✓ ✓ ✓ ✓ ✓ ✓

Trend
None ✓ ✓ ✓ ✓ ✓
Additive/damped ✓ ✓ ✓ ✓ ✓

Season
None ✓ ✓ ✓ ✓
Additive ✓ ✓ ✓ ✓
Multiplicative ✓ ✓
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Results

Table 3 presents the summary AvgRelMSE results, over all forecast origins, for both ETS and ARIMA forecasts. We provide results
for the complete hierarchy and the bottom-level time series separately, where the errors across time series are summarised using the
geometric mean. The results are grouped by reconciliation method. At each column, the lowest error is highlighted in boldface. Fig. 7
illustrates the forecast errors as different reconciliation methods are used. In both panels (a) and (b), which present the results for ETS
and ARIMA respectively, the proposed cross-temporally coherent Var-A and MinT-A are highlighted with light grey background.

First, we focus on the case of no-temporal reconciliation. The case of no reconciliation (None), where forecasts are produced
independently and there is no guarantee of coherence is reported in the first row of Table 3. As this is used to scale the errors, across
all columns its value is equal to 1. This is the worst performing case, demonstrating that any partial or complete coherence always
benefits forecast accuracy. The next two results refer to the cross-sectionally reconciled forecasts using Var and MinT scaling, with the
later performing best across both ETS and ARIMA forecasts, for both the bottom-level and the complete hierarchy. This is due to Var
ignoring any interrelationships between the cross-sections of the hierarchy. In this case, Var-A and MinT-A do not achieve cross-
temporal coherence, as the forecasts are not temporally coherent. Due to this, their performance is somewhat inferior to Var and
MinT respectively.

Next, we analyse the results when the forecasts are temporally reconciled, using Var scaling. It is interesting to observe that the
temporal coherence, achieved by temporal reconciliation, decreases forecast errors almost uniformly, irrespective of the cross-sec-
tional reconciliation used. This is evident in Fig. 7. For the temporally coherent forecasts, when no cross-sectional reconciliation is
applied, we observe the lowest accuracy within the group. The differences between Var and Var-A, and MinT and MinT-A, are
marginal, once the starting point is temporally reconciled forecasts. Across the board, the MinT variants perform better than the Var
variants. The results are very similar when the temporal reconciliation uses structural scaling, albeit marginally inferior to the Var
results.

Fig. 8 helps us visualise the results of the statistical comparisons between the alternative forecasts. The figure has four panels: (a)
and (c) provide the results for ETS across all levels of the hierarchy and for the bottom-level only; and (b) and (d) provide the
respective results for ARIMA forecasts. On the vertical axis of each panel, alternative forecasts are sorted according to their mean MSE
rank. Hence, the top row shows the best performing cross-temporal combination. For example panel (c) shows that, MinT-A-Var, i.e.,
the combination of Mint-A for cross-sectional and Var for temporal reconciliation produces the most accurate forecasts. On the
horizontal axis the forecasts are grouped by the temporal reconciliation approach.

The black cell in each row indicates the tested forecast, while any blue cells in the corresponding row or column indicate forecasts
for which there is no evidence of statistically significant differences, at a 5% level. Hence, any filled cells in the corresponding row or
column indicate forecasts that can be grouped together as having similar forecast accuracy in statistical terms. For example, in panel
(c) the first row tests the MinT-A-Var forecasts. These are found to be statistically indifferent to MinT-Var and MinT-Struc. Note that
the columns shaded in light grey correspond to the cross-temporally coherent forecasts (Var-A and MinT-A).

First, we explore the results for ETS presented in panels (a) and (c). Across all levels of the hierarchy MinT-A-Var is performing
significantly better than all alternatives. This is followed by MinT-Var, which is grouped together with MinT-A-Struc. When we solely
consider bottom-level series in panel (c), we observe that MinT-A-Var, MinT-A-Struc and MinT-Var are grouped together as top
performing approaches. On the other extreme, not implementing any reconciliation is significantly worst than all other forecasts,
across the board. Analysing the results for ARIMA, panels (b) and (d), we observe that for both the bottom-level series and the
complete hierarchy, MinT-A-Var, MinT-Var, MinT-A-Struc and MinT-Struc belong to the top performing group of forecasts. Similarly
to the ETS case, using no reconciliation results in a significantly worse performance.

Note that for both ETS and ARIMA, the Var and Var-A variants for the cross-sectional reconciliation are similarly grouped. At this

Table 3
AvgRelMSE for ETS and ARIMA for ‘All’ 116 and only the 76 ‘Bottom’ level series.

Temporal Cross-sectional ETS ARIMA

All Bottom All Bottom

None None 1.000 1.000 1.000 1.000
Var 0.992 0.986 0.968 0.962
MinT 0.982 0.976 0.934 0.930
Var-A 0.992 0.986 0.970 0.963
MinT-A 0.986 0.981 0.944 0.938

Var None 0.982 0.978 0.969 0.971
Var 0.976 0.967 0.944 0.939
MinT 0.969 0.961 0.919 0.916
Var-A 0.976 0.967 0.945 0.939
MinT-A 0.968 0.961 0.921 0.919

Struc None 0.983 0.979 0.969 0.972
Var 0.977 0.968 0.945 0.939
MinT 0.971 0.962 0.921 0.917
Var-A 0.977 0.968 0.945 0.940
MinT-A 0.970 0.963 0.923 0.920
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point we can draw some conclusions with respect to the performance of the different forecasts. Overall, temporal reconciliation
provides substantial accuracy benefits over forecasts that are not temporally coherent, irrespectively of whether Var or Struc is used.
The benefits are not restricted to accuracy gains, but also to aligned plans across different horizons, as short- and long-term forecasts
are coherent. Cross-sectional reconciliation offers further advantage, with MinT being more accurate than Var. The cross-temporally
coherent MinT-A forecasts are either best overall, or within the top performing group of forecasts, depending on the case. Therefore,
the proposed cross-temporal schemes offer small, yet significant accuracy gains. However, a paramount of cross-temporally coherent
forecasts is that across all levels and scales of decision making, from the operational micro to strategic macro level, from the short-
term to the long-term, from the disaggregate regional to the aggregate country level, all decision makers have a coherent view of the
future and are therefore able to make consistent decisions and implement aligned policy.

Fig. 9 plots the magnitude of the temporal reconciliation errors for ETS forecasts from a single forecast origin across all time series
of the hierarchy, for the various reconciliation approaches. A temporal reconciliation error is defined and calculated as the difference
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Fig. 7. AvgRelMSE results for ETS and ARIMA. Methods are grouped per temporal reconciliation type. Methods with light greyed background
generate cross-temporally coherent forecasts.
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between an aggregate forecast at the top (annual) temporal aggregation level and the sum of the bottom-level (monthly) forecasts.
The columns of Fig. 9 show the reconciliation errors across each of the 111 series, across the four cross-sectional hierarchical levels.

In the top panel, no temporal reconciliation is applied and we observe discrepancies across all series. Note that cross-sectional
reconciliation, using either Var or MinT, somewhat mitigates these differences. When temporal reconciliation is applied, using either
Var or Struc scaling shown by the middle and bottom panels, the reconciliation errors become much smaller. This is evident by the
significant decrease in the scale of the legend on the right side of the panels.

When no cross-sectional reconciliation is applied, as shown in the first row of the middle and bottom panels, temporal re-
conciliation holds. However, when applying cross-sectional reconciliation using either Var or MinT, the resulting forecasts become
decoherent, with the temporal coherence violated so as to satisfy cross-sectional coherence. MinT-A and Var-A, which both offer
cross-temporal coherence, avoid this problem and the reconciliation errors remain zero, for all time series. Fig. 9 is illustrative of the
behaviour of the errors for other forecast origins and for ARIMA.

Conclusions

It is worthwhile to reflect on the development of hierarchical forecasting over the recent years. Athanasopoulos et al. (2009)
demonstrated the benefits of hierarchical approaches for forecasting tourism flows. In that evaluation traditional approaches, such as
bottom-up and top-down, that lacked the theoretical grounding of current approaches, performed competitively with the then
fledgling reconciliation framework used here, and offered only cross-sectional coherence. With the development of the methodology,
and specifically with the work by Wickramasuriya et al. (2018) that introduced MinT and its theoretical grounding, substantial
accuracy gains became achievable. Indeed, in our evaluation, MinT provides the best accuracy. This is due to its blending of in-
formation available at different levels of the hierarchical tree and capturing any interconnections between the time series.
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Fig. 8. Nemenyi test results at 5% significance level. Methods are sorted vertically according to MSE mean rank. Horizontally they are grouped by
modelling regime. At each row, the test method is in black and any methods with no evidence of significant differences are in blue. The light grey
columns refer to cross-temporally consistent methods, Var-A and MinT-A. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Another substantial innovation came with the idea of temporally reconciling forecasts, introduced by Kourentzes et al. (2014) and
generalised in the THieF framework by Athanasopoulos et al. (2017). This added a new dimension of forecast coherence, aligning
different planning levels and forecast horizons. In our empirical results, we attributed to temporal reconciliation, irrespective of the
approach followed, the biggest gains in accuracy. It should be noted that THieF and MinT share a common mathematical framework,
originally introduced by Hyndman et al. (2011) and subsequently refined towards these two directions: cross-sectional and temporal
reconciliation, nowadays both routinely offering substantive and consistent forecast improvements. Yet, the two approaches had
remained so far completely disjointed.

This paper proposes a solution to the ‘decoherence’ between the two reconciliation approaches, offering cross-temporally re-
conciled forecasts. We found that this offered small, yet statistically significant, accuracy gains. This is to be expected, as the temporal
and cross-sectional reconciliations had already separately eliminated many of the incoherences of the forecasts. Nonetheless, as these
reconciled forecasts had access to information only across a single dimension of the hierarchical tree, they could not achieve the
maximum benefits. However, we argue that the accuracy improvements are in fact secondary to the managerial implications.

Cross-temporal reconciliation offers a single view of the future to all decision makers, removing any organisational friction from
misaligned decisions. More crucially, it offers a data driven way to break within and between organisations information silos. Cross-
temporal reconciliation blends information from different sources, levels of the hierarchy and scales. Base forecasts can be opera-
tional, short term, taking into consideration information directly sourced from consumers, or long term strategic ones for a whole
company, sector or country, taking into consideration macro-economic and soft-information, such as technological innovation, that is
infeasible to consider for very detailed disaggregate forecasts, as well as all in-between information sources. All these forecasts,
conditional on different information, and generated with a variety of statistical and judgemental methods, can be blended together
with the proposed approach to provide a common view of a ‘single-number forecast’. If decisions and plans are based on this common
view of the future, these will be already aligned, even with limited interaction between different functions of an organisation, or
actors in a sector, here tourism. This is achieved without requiring changing the organisational culture or the collaboration between
different allied actors in a sector, which could be the different tiers of a supply chain, or private and public organisations aiming to
offer high quality service to consumers. Such managerial changes are time consuming and expensive, while the data driven nature of
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Fig. 9. Reconciliation errors after cross-sectional reconciliation, for a single series and forecast origin, between temporally disaggregate and ag-
gregate views of the data, for the different temporal reconciliation methods. Time series are ordered in the horizontal axis as in Table A.4.
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cross-temporal reconciliation makes it possible to automate and frictionless.
Specifically for tourism flows, the different decisions in managing a hotel, with different scope and planning horizons, can become

aligned, but at the same time decisions can become coherent with different hotels within a hotel chain, with the various supporting
tourist attractions and services that benefit from and require the presence of well functioning hotels, and with the bird's eye view that
a tourism board has at a regional or country level. The extend of the alignment depends solely on the scope of the cross-sectional
reconciliation. This becomes particularly relevant given the availability of multiple traditional and novel data sources that lie beyond
the boundaries of an organisation, such as publicly available macro-economic indicators (Sagaert, Aghezzaf, Kourentzes, & Desmet,
2017; Sagaert et al., 2018) or online consumer behaviour and social media interactions (Schaer, Kourentzes, & Fildes, 2018). We aim
to explore the use of such information sources within the cross-temporal context in future work.

This raises a related question. Can we inform the analysts about how many different hierarchical levels are enough? From a
statistical standpoint, additional information is beneficial. However this raises a practical consideration of how expensive is the
associated data gathering and analytics infrastructure. Depending on the decision making and planning scope, forecasts at different
levels need to be coherent and at minimum data for these levels needs to be collected. Nonetheless, more levels can be beneficial, as
the hierarchical framework can make use of the additional information. Therefore, the analyst must balance the data gathering
associated costs with the cross-temporal hierarchical forecasting benefits. As the analytics capabilities in organisations increase and
data sources become increasingly interconnected the cost is expected to reduce. Furthermore, a major advantage of cross-temporal
hierarchies is that they are modular in nature. When an additional layer of information becomes available, it is trivial to extend the
hierarchy. Therefore, the analyst can rely on existing data structures and expand these as more data becomes available.

Furthermore, the proposed cross-temporal reconciliation revealed some of the limitations of either sides of the reconciliation, in
that the generation of a global summing matrix or the estimation of respective Wh is neither trivial, not feasible by simply expanding
the size of current matrices, providing a fertile route of investigation for further refining the forecast reconciliation theory.

Statement of contribution

Our paper develops the theory for improving tourism statistical forecasting and we demonstrate the value of our proposed
approach on a real case predicting domestic tourism flows for Australia. We look at the hierarchical aspect of the problem, where
forecasts for different geographical regions or segments, or of different planning horizons, must adhere to aggregation constraints. In
the tourism literature the cross-sectional dimension of the hierarchy has been shown to provide accuracy benefits. Our work in-
troduces the temporal aspect, for different planning horizons, and provides a novel approach for merging the two into cross-tem-
porally coherent forecasts. We demonstrate empirically forecast accuracy gains. These forecasts provide the decision makers with a
common view from the long-term aggregate strategic level, to the detailed disaggregate, supporting short term operations. This
ensures aligned decision making and assists to overcome organisational and information silos in a data driven fashion.

Appendix A. Australian tourism flow time series

Table A.4 provides a detailed breakdown of the 111 time series used in this study into different geographical divisions. These
report visitor nights and are used as a proxy for tourism flows.

Table A.4
Geographical divisions of Australia.

Series Name Label Series Name Label

Total Regions continued
1 Australia Total 55 Gippsland BCB

States 56 Phillip Island BCC
2 NSW A 57 Central Murray BDA
3 VIC B 58 Goulburn BDB
4 QLD C 59 High Country BDC
5 SA D 60 Melbourne East BDD
6 WA E 61 Upper Yarra BDE
7 TAS F 62 Murray East BDF
8 NT G 63 Mallee BEA

Zones 64 Wimmera BEB
9 Metro NSW AA 65 Great Ocean Road BEC

10 Nth Coast NSW AB 66 Bendigo Loddon BED
11 Sth Coast NSW AC 67 Macedon BEE
12 Sth NSW AD 68 Spa Country BEF
13 Nth NSW AE 69 Ballarat BEG
14 ACT AF 70 Central Highlands BEH
15 Metro VIC BA 71 Gold Coast CAA
16 West Coast VIC BB 72 Brisbane CAB
17 East Coast VIC BC 73 Sunshine Coast CAC
18 Nth East VIC BD 74 Central Queensland CBA

(continued on next page)

N. Kourentzes and G. Athanasopoulos Annals of Tourism Research 75 (2019) 393–409

407



Table A.4 (continued)

Series Name Label Series Name Label

19 Nth West VIC BE 75 Bundaberg CBB
20 Metro QLD CA 76 Fraser Coast CBC
21 Central Coast QLD CB 77 Mackay CBD
22 Nth Coast QLD CC 78 Whitsundays CCA
23 Inland QLD CD 79 Northern CCB
24 Metro SA DA 80 Tropical North Queensland CCC
25 Sth Coast SA DB 81 Darling Downs CDA
26 Inland SA DC 82 Outback CDB
27 West Coast SA DD 83 Adelaide DAA
28 West Coast WA EA 84 Barossa DAB
29 Nth WA EB 85 Adelaide Hills DAC
30 Sth WA EC 86 Limestone Coast DBA
31 Sth TAS FA 87 Fleurieu Peninsula DBB
32 Nth East TAS FB 88 Kangaroo Island DBC
33 Nth West TAS FC 89 Murraylands DCA
34 Nth Coast NT GA 90 Riverland DCB
35 Central NT GB 91 Clare Valley DCC

Regions 92 Flinders Range and Outback DCD
36 Sydney AAA 93 Eyre Peninsula DDA
37 Central Coast AAB 94 Yorke Peninsula DDB
38 Hunter ABA 95 Experience Perth EAA
39 North Coast NSW ABB 96 Australia's Coral Coast EAB
40 South Coast ACA 97 Australia's South West EAC
41 Snowy Mountains ADA 98 Australia's North West EBA
42 Capital Country ADB 99 Australia's Golden Outback ECA
43 The Murray ADC 100 Hobart and the South FAA
44 Riverina ADD 101 East Coast FBA
45 Central NSW AEA 102 Launceston, Tamar and the North FBB
46 New England North West AEB 103 North West FCA
47 Outback NSW AEC 104 Wilderness West FCB
48 Blue Mountains AED 105 Darwin GAA
59 Canberra AFA 106 Kakadu Arnhem GAB
50 Melbourne BAA 107 Katherine Daly GAC
51 Peninsula BAB 108 Barkly GBA
52 Geelong BAC 109 Lasseter GBB
53 Western BBA 110 Alice Springs GBC
54 Lakes BCA 111 MacDonnell GBD
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